Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://strathprints.strath.ac...
Conference object
Data sources: UnpayWall
https://doi.org/10.1109/upec.2...
Conference object . 2018 . Peer-reviewed
Data sources: Crossref
Strathprints
Part of book or chapter of book . 2018
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative analysis of binning and support vector regression for wind turbine rotor speed based power curve use in condition monitoring

Authors: Pandit, Ravi; Infield, David;

Comparative analysis of binning and support vector regression for wind turbine rotor speed based power curve use in condition monitoring

Abstract

Unscheduled maintenance consumes a lot of time and effort and hence reduces the overall cost-effectiveness of wind turbines. Supervisory control and data acquisition (SCADA) based condition monitoring is a cost-effective approach to carry out diagnosis and prognosis of faults and to provide performance assessment of a wind turbine. The rotor speed based power curve, which describes the nonlinear relationship between wind turbine rotor speed and power output, is useful for performance appraisal of a wind turbine though limited work on this area has been undertaken to date. Support Vector Machine (SVM) is a data-driven, nonparametric approach used for both classification and regression problems developed initially from statistical learning theory (SLT) by Vapnik. SVM is useful in forecasting and prediction applications. This paper deals with the application of support vector regression to estimate the rotor speed based power curve of a wind turbine and its usefulness in identifying potential faults. It is compared with a conventional approach based on a binned rotor speed power curve to identify operational anomalies. The comparative studies summaries the advantages and disadvantages of these techniques. SCADA data obtained from a healthy operational wind turbine is used to train and validate these methods.

Country
United Kingdom
Related Organizations
Keywords

690, 330, Environmental engineering, TA170, 620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green