
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predictive energy management of hybrid vehicle
Hybrid vehicles use two energy sources for their propelling. Usually an internal combustion engine (ICE) is used with one or more electric machine(s) (EM). The problem is then to split the driver power demand between the ICE and the EM in order to minimize a criterion, usually the fuel consumption. A global optimization algorithm based on optimal control theory is recalled. The obtained results are optimal but can only be obtained in simulation. For real time control purpose, this optimization algorithm is applied on a receding horizon. The main problem is then to choose the variables to be predicted on this horizon. By analyzing the optimization algorithm, it is shown that the prediction of the future driving conditions (vehicle speed and driver torque demand) is not necessary. Therefore, under some assumptions, a real time control is possible.
PREDICTIVE CONTROL, [SPI.NRJ]Engineering Sciences [physics]/Electric power, HYBRID VEHICLES, ENERGIE, CONTROL STRATEGY, OPTIMAL CONTROL, [ SPI.NRJ ] Engineering Sciences [physics]/Electric power, ENERGY MANAGEMENT, CONTROLE, VEHICULE HYBRIDE, VEHICULE ELECTRIQUE
PREDICTIVE CONTROL, [SPI.NRJ]Engineering Sciences [physics]/Electric power, HYBRID VEHICLES, ENERGIE, CONTROL STRATEGY, OPTIMAL CONTROL, [ SPI.NRJ ] Engineering Sciences [physics]/Electric power, ENERGY MANAGEMENT, CONTROLE, VEHICULE HYBRIDE, VEHICULE ELECTRIQUE
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
