
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Optimal Energetic Approach for Systemic Design of Hybrid Powertrain
Ongoing oil stock depletion and growing environmental concerns lead automakers to develop more efficient powertrains. Today, the most promising way forward consists in research on hybrid systems. Defining the most efficient powertrain requires a systemic design. In this paper, three main levers are used: powertrain architecture, energy management and electric components design. Different powertrain architectures (series, parallel and combined) are compared: their optimal energetic performances are calculated for different INRETS 1 driving cycles by using dynamic programming as an optimal control strategy. The most promising hybrid powertrain is the parallel one. Its behavior is more closely analyzed so as to provide technical specifications for an optimal sizing of the electric components: electric machine and battery.
[SPI] Engineering Sciences [physics], systemic design, passenger car, [SPI]Engineering Sciences [physics], energy consumption, HEV (Electric Hybrid Vehicle), [ SPI ] Engineering Sciences [physics], power management
[SPI] Engineering Sciences [physics], systemic design, passenger car, [SPI]Engineering Sciences [physics], energy consumption, HEV (Electric Hybrid Vehicle), [ SPI ] Engineering Sciences [physics], power management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
