
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Renewable energies and biodiversity: Impact of ground‐mounted solar photovoltaic sites on bat activity

Renewable energies and biodiversity: Impact of ground‐mounted solar photovoltaic sites on bat activity
Abstract Renewable energy is growing at a rapid pace globally but as yet there has been little research on the effects of ground‐mounted solar photovoltaic (PV) developments on bats, many species of which are threatened or protected. We conducted a paired study at 19 ground‐mounted solar PV developments in southwest England. We used static detectors to record bat echolocation calls from boundaries (i.e. hedgerows) and central locations (open areas) at fields with solar PV development, and simultaneously at matched sites without solar PV developments (control fields). We used generalised linear mixed‐effect models to assess how solar PV developments and boundary habitat affected bat activity and species richness. The activity of six of eight species/species groups analysed was negatively affected by solar PV panels, suggesting that loss and/or fragmentation of foraging/commuting habitat is caused by ground‐mounted solar PV panels. Pipistrellus pipistrellus and Nyctalus spp. activity was lower at solar PV sites regardless of the habitat type considered. Negative impacts of solar PV panels at field boundaries were apparent for the activity of Myotis spp. and Eptesicus serotinus, and in open fields for Pipistrellus pygmaeus and Plecotus spp. Bat species richness was greater along field boundaries compared with open fields, but there was no effect of solar PV panels on species richness. Policy implications: Ground‐mounted solar photovoltaic developments have a significant negative effect on bat activity, and should be considered in appropriate planning legislation and policy. Solar photovoltaic developments should be screened in Environmental Impact Assessments for ecological impacts, and appropriate mitigation (e.g. maintaining boundaries, planting vegetation to network with surrounding foraging habitat) and monitoring should be implemented to highlight potential negative effects.
- Eötvös Loránd University Hungary
- Centre for Ecology and Conservation Sciences France
- Sorbonne Paris Cité France
- Laboratoire d'informatique de Paris 6 France
- University of Stirling United Kingdom
energy-wildlife conflict, solar farm, 590, echolocation calls, photovoltaic panels, bats, bat, farmland, Biodiversity, 333, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, green energy, environmental policy, Chiroptera, Mammalia, Animalia, Chordata
energy-wildlife conflict, solar farm, 590, echolocation calls, photovoltaic panels, bats, bat, farmland, Biodiversity, 333, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, green energy, environmental policy, Chiroptera, Mammalia, Animalia, Chordata
1 Research products, page 1 of 1
- 2025IsCompiledBy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
