Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Microb...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Microbiology
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nutrient Availability Shapes the Resistance of Soil Bacterial Community and Functions to Disturbances in Desert Ecosystem

Authors: Hang Gao; Yuan Song; Mingyu Li; Min Gao; Ziheng Peng; Haibo Pan; Jiejun Qi; +6 Authors

Nutrient Availability Shapes the Resistance of Soil Bacterial Community and Functions to Disturbances in Desert Ecosystem

Abstract

ABSTRACTClimate change has exposed desert ecosystems to frequent extreme disturbances, including wet‐dry cycles and freeze–thaw events, which accelerate desertification on a global scale. The limited nutrient availability characteristic of these ecosystems may constrain microbial survival and growth, making them more vulnerable to environmental perturbations and stressors. However, how nutrient availability modulates the stability of soil ecological communities and functions in desert ecosystems remains poorly understood. In this study, we examined how nutrient addition, applied either before or after disturbances, affects the resistance of bacterial communities and multifunctionality to drought and freeze events in desert ecosystems. Our findings revealed that freeze–thaw events, rather than drought, significantly reduced bacterial diversity, with all disturbances altering the community structure. Pre‐disturbance nutrient addition notably improved the resistance of soil bacterial diversity and community composition to disturbances, which played a critical role in maintaining multifunctionality in desert ecosystems. This enhanced bacterial resistance was strongly associated with increased bacterial network complexity and the enrichment of disturbance‐tolerant taxa. Our results highlight the pivotal role of nutrient availability in stabilising soil bacterial communities and multifunctionality under extreme climatic conditions in desert ecosystems. These findings offer valuable insights and practical strategies for the ecological protection and management of desertification.

Related Organizations
Keywords

Soil, Bacteria, Microbiota, Climate Change, Nutrients, Biodiversity, Desert Climate, Soil Microbiology, Ecosystem, Droughts

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research