Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Methods in Ecology a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Methods in Ecology and Evolution
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Methods in Ecology and Evolution
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SWAMP: A new experiment for simulating permafrost warming and active layer deepening on the Tibetan Plateau

Authors: Yuxuan Bai; Yunfeng Peng; Wei Zhou; Yuhong Xie; Qinlu Li; Guibiao Yang; Leiyi Chen; +2 Authors

SWAMP: A new experiment for simulating permafrost warming and active layer deepening on the Tibetan Plateau

Abstract

Abstract Our knowledge on the responses of permafrost ecosystems to climate warming is critical for assessing the direction and magnitude of permafrost carbon‐climate feedback. However, most of the previous experiments have only been able to warm the air and surface soil, with limited effects on the permafrost temperature. Consequently, it remains challenging to realistically simulate permafrost thawing in terms of increased active layer (a layer freezing and thawing seasonally above permafrost) thickness under climate warming scenarios. Here, we presented the experimental design and warming performance of a novel experiment, Simulate Warming at Mountain Permafrost (SWAMP), the first one to successfully simulate permafrost warming and the subsequent active layer deepening in a swamp meadow situated on the Tibetan Plateau. Infrared heating was employed as above‐ground warming to elevate the temperature of the air and surface soil, and heating rods were inserted vertically in the soil to provide below‐ground warming for transmitting heat to the deep active layer and even to permafrost deposits. In 3 m diameter warmed circular plots, the air and the entire soil profile (from surface soil to 120 cm) was effectively heated, with an increase of approximately 2°C in the upper 60 cm, which progressively weakened with soil depth. Warming increased soil moisture across the growing season by inducing an earlier thawing of the soil. Values varied from 1.8 ± 1.8 to 12.3 ± 2.3% according to the soil depth. Moreover, during the growing season, the warmed plots had greater thaw depths and a deeper active layer thickness of 12.6 ± 0.8 cm. In addition, soil thawing duration was prolonged by the warming, ranging from 22.8 ± 3.3 to 49.3 ± 4.5 days depending on the soil depth. The establishment of SWAMP provides a more realistic simulation of warming‐induced permafrost thaw, which can then be used to explore the effect of climate warming on permafrost ecosystems and the potential permafrost carbon‐climate feedback. Notably, our experiment is more advantageous for investigating how deep soil processes respond to climate warming and active layer deepening, compare with experiments which use passive warming techniques such as open top chambers (OTCs).

Related Organizations
Keywords

active layer thickness, climate change, Ecology, Evolution, active warming technique, carbon cycle, deep soil warming, QH359-425, QH540-549.5, permafrost

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
Related to Research communities
Energy Research