Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Conservation Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Conservation Biology
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reptile responses to fire across the western Mediterranean Basin

Authors: Xavier Santos; Brahim Chergui; Josabel Belliure; Francisco Moreira; Juli G. Pausas;

Reptile responses to fire across the western Mediterranean Basin

Abstract

AbstractEffects of anthropogenic activities, including climate change, are modifying fire regimes, and the dynamic nature of these modifications requires identification of general patterns of organisms’ responses to fire. This is a challenging task because of the high complexity of factors involved (including climate, geography, land use, and species‐specific ecology). We aimed to describe the responses of the reptile community to fire across a range of environmental and fire‐history conditions in the western Mediterranean Basin. We sampled 8 sites that spanned 4 Mediterranean countries. We recorded 6064 reptile sightings of 36 species in 1620 transects and modeled 3 community metrics (total number of individuals, species richness, and Shannon diversity) as responses to environmental and fire‐history variables. Reptile community composition was also analyzed. Habitat type (natural vs. afforestation), fire age class (time since the last fire), rainfall, and temperature were important factors in explaining these metrics. The total number of individuals varied according to fire age class, reaching a peak at 15–40 years after the last fire. Species richness and Shannon diversity were more stable during postfire years. The 3 community metrics were higher under postfire conditions than in unburned forest plots. This pattern was particularly prevalent in afforested plots, indicating that the negative effect of fire on reptiles was lower than the negative effect of afforestation. Community composition varied by fire age class, indicating the existence of early‐ and late‐successional species (xeric and saxicolous vs. mesic reptiles, respectively). Species richness was 46% higher in areas with a single fire age class relative to those with a mixture of fire age classes, which indicates pyrodiverse landscapes promoted reptile diversity. An expected shift to more frequent fires will bias fire age distribution toward a predominance of early stages, and this will be harmful to reptile communities.

Keywords

Conservation of Natural Resources, Mediterranean Region, Climate Change, Reptiles, Biodiversity, Fires, Contributed Paper, Animals, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research