Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology Letters
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Ecology Letters
Article . 2025
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Body Mass–Biomass Scaling Modulates Species Keystone‐Ness to Press Perturbations

Authors: Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;

Body Mass–Biomass Scaling Modulates Species Keystone‐Ness to Press Perturbations

Abstract

ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.

Country
Netherlands
Related Organizations
Keywords

community biomass structure, Food Chain, food web, inverse community matrix, Models, Biological, Allometric Trophic Network model, trophic interaction strength, Animals, Body Size, topological and energetic traits, Biomass, press perturbation, keystone species, top-heaviness

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research