
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of the 2014–2016 marine heatwave on US and Canada West Coast fisheries: Surprises and lessons from key case studies

doi: 10.1111/faf.12753
handle: 11122/13216
Impact of the 2014–2016 marine heatwave on US and Canada West Coast fisheries: Surprises and lessons from key case studies
AbstractMarine heatwaves are increasingly affecting marine ecosystems, with cascading impacts on coastal economies, communities, and food systems. Studies of heatwaves provide crucial insights into potential ecosystem shifts under future climate change and put fisheries social‐ecological systems through “stress tests” that expose both vulnerabilities and resilience. The 2014–16 Northeast Pacific heatwave was the strongest and longest marine heatwave on record and resulted in profound ecological changes that impacted fisheries, fisheries management, and human livelihoods. Here, we synthesize the impacts of the 2014–2016 marine heatwave on US and Canada West Coast fisheries and extract key lessons for preparing global fisheries science, management, and industries for the future. We set the stage with a brief review of the impacts of the heatwave on marine ecosystems and the first systematic analysis of the economic impacts of these changes on commercial and recreational fisheries. We then examine ten key case studies that provide instructive examples of the complex and surprising challenges that heatwaves pose to fisheries social‐ecological systems. These reveal important insights into improving the resilience of monitoring and management and increasing adaptive capacity to future stressors. Key recommendations include: (1) expanding monitoring to enhance mechanistic understanding, provide early warning signals, and improve predictions of impacts; (2) increasing the flexibility, adaptiveness, and inclusiveness of management where possible; (3) using simulation testing to help guide management decisions; and (4) enhancing the adaptive capacity of fishing communities by promoting engagement, flexibility, experimentation, and failsafes. These advancements are important as global fisheries prepare for a changing ocean.
- University of California, San Diego United States
- National Oceanic and Atmospheric Administration United States
- Oregon State University United States
- Scripps Institution of Oceanography United States
- University of Alaska System United States
ecological surprises, Environmental management, Ecology, Fisheries, climate-adaptive management, Fisheries Sciences, climate-resilient fisheries, Environmental Management, Climate Action, harmful algal blooms, ocean warming, climate change, Fisheries sciences, Climate Change Impacts and Adaptation, Life Below Water, Environmental Sciences
ecological surprises, Environmental management, Ecology, Fisheries, climate-adaptive management, Fisheries Sciences, climate-resilient fisheries, Environmental Management, Climate Action, harmful algal blooms, ocean warming, climate change, Fisheries sciences, Climate Change Impacts and Adaptation, Life Below Water, Environmental Sciences
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
