
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of climate‐related carbon turnover processes in global vegetation models for boreal and temperate forests

Evaluation of climate‐related carbon turnover processes in global vegetation models for boreal and temperate forests
AbstractTurnover concepts in state‐of‐the‐art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter‐Sectoral Impact Model Intercomparison Project (ISI‐MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation‐based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation‐based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation‐based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large‐scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.
- Max Planck Society Germany
- Leibniz Association Germany
- University of Sheffield United Kingdom
- CEA LETI France
- Met Office United Kingdom
570, 330, 550, boreal and temperate forest, [SDE.MCG]Environmental Sciences/Global Changes, Climate Change, global vegetation model evaluation, climate-related spatial gradients, Forests, Carbon Cycle, Trees, vegetation carbon turnover rate, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, Landoberfläche, Ecosystem, [SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere, ISI-MIP, Models, Theoretical, Primary Research Articles, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Carbon, [SDE.MCG] Environmental Sciences/Global Changes, remote sensing based NPP and biomass, forest mortality, frost stress, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, drought stress and insect outbreaks
570, 330, 550, boreal and temperate forest, [SDE.MCG]Environmental Sciences/Global Changes, Climate Change, global vegetation model evaluation, climate-related spatial gradients, Forests, Carbon Cycle, Trees, vegetation carbon turnover rate, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, Landoberfläche, Ecosystem, [SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere, ISI-MIP, Models, Theoretical, Primary Research Articles, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Carbon, [SDE.MCG] Environmental Sciences/Global Changes, remote sensing based NPP and biomass, forest mortality, frost stress, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, drought stress and insect outbreaks
7 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
