Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying multiple pressure interactions affecting populations of a recreationally and commercially important freshwater fish

Authors: Lee F. G. Gutowsky; Henrique C. Giacomini; Derrick T. de Kerckhove; Rob Mackereth; Darren McCormick; Cindy Chu;

Quantifying multiple pressure interactions affecting populations of a recreationally and commercially important freshwater fish

Abstract

AbstractThe expanding human global footprint and growing demand for freshwater have placed tremendous stress on inland aquatic ecosystems. Aichi Target 10 of the Convention on Biological Diversity aims to minimize anthropogenic pressures affecting vulnerable ecosystems, and pressure interactions are increasingly being incorporated into environmental management and climate change adaptation strategies. In this study, we explore how climate change, overfishing, forest disturbance, and invasive species pressures interact to affect inland lake walleye (Sander vitreus) populations. Walleye support subsistence, recreational, and commercial fisheries and are one of most sought‐after freshwater fish species in North America. Using data from 444 lakes situated across an area of 475 000 km2in Ontario, Canada, we apply a novel statistical tool, R‐INLA, to determine how walleye biomass deficit (carrying capacity—observed biomass) is impacted by multiple pressures. Individually, angling activity and the presence of invasive zebra mussels (Dreissena polymorpha) were positively related to biomass deficits. In combination, zebra mussel presence interacted negatively and antagonistically with angling activity and percentage decrease in watershed mature forest cover. Velocity of climate change in growing degree days above 5°C and decrease in mature forest cover interacted to negatively affect walleye populations. Our study demonstrates how multiple pressure evaluations can be conducted for hundreds of populations to identify influential pressures and vulnerable ecosystems. Understanding pressure interactions is necessary to guide management and climate change adaptation strategies, and achieve global biodiversity targets.

Keywords

Ontario, Conservation of Natural Resources, Climate Change, Fisheries, Biodiversity, Lakes, Perches, Animals, Introduced Species, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%