
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in Central Europe

doi: 10.1111/gcb.15922
pmid: 34610189
AbstractExtreme tree growth reductions represent events of abrupt forest productivity decline and carbon sequestration reduction. An increase in their magnitude can represent an early warning signal of impending tree mortality. Yet the long‐term trends in extreme growth reductions remain largely unknown. We analyzed the trends in the proportion of trees exhibiting extreme growth reductions in two Central‐European conifer species—Pinus sylvestris (PISY) and Picea abies (PCAB)—between 1901 and 2018. We used a novel approach for extreme growth reduction quantification by relating their size to their mean recurrence interval. Twenty‐eight sites throughout Czechia and Slovakia with 1120 ring width series representing high‐ and low‐elevation forests were inspected for extreme growth reductions with recurrence intervals of 15 and 50 years along with their link to climatic drivers. Our results show the greatest growth reductions at low‐elevation PCAB sites, indicating high vulnerability of PCAB to drought. The proportions of trees exhibiting extreme growth reductions increased over time at low‐elevation PCAB, decreased recently following an abrupt increase in the 1970–1980s at high‐elevation PCAB, and showed nonsignificant trends in high‐ and low‐elevation PISY. Climatic drivers of extreme growth reductions, however, shifted over time for all site categories as the proportion of low‐temperature‐induced extreme growth reductions declined since the 1990s, whereas events caused by drought consistently increased in frequency during the same period. We observed higher growth volatility at the lower range of distribution compared with the upper range margin of PISY and PCAB. This will undoubtedly considerably impact tree growth and vitality as temperatures and incidence of drought in Central Europe are expected to further increase with ongoing climate change.
- Czech Hydrometeorological Institute Czech Republic
- Charles University Czech Republic
- Czech University of Life Sciences Prague Czech Republic
- Czech Hydrometeorological Institute Czech Republic
Climate Change, Pinus sylvestris, Forests, Pinus, Droughts, Trees, Europe, Picea, Abies
Climate Change, Pinus sylvestris, Forests, Pinus, Droughts, Trees, Europe, Picea, Abies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
