
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In situ 15N‐N2O site preference and O2 concentration dynamics disclose the complexity of N2O production processes in agricultural soil

doi: 10.1111/gcb.16753
pmid: 37183810
AbstractArable soil continues to be the dominant anthropogenic source of nitrous oxide (N2O) emissions owing to application of nitrogen (N) fertilizers and manures across the world. Using laboratory and in situ studies to elucidate the key factors controlling soil N2O emissions remains challenging due to the potential importance of multiple complex processes. We examined soil surface N2O fluxes in an arable soil, combined with in situ high‐frequency measurements of soil matrix oxygen (O2) and N2O concentrations, in situ 15N labeling, and N2O 15N site preference (SP). The in situ O2 concentration and further microcosm visualized spatiotemporal distribution of O2 both suggested that O2 dynamics were the proximal determining factor to matrix N2O concentration and fluxes due to quick O2 depletion after N fertilization. Further SP analysis and in situ 15N labeling experiment revealed that the main source for N2O emissions was bacterial denitrification during the hot‐wet summer with lower soil O2 concentration, while nitrification or fungal denitrification contributed about 50.0% to total emissions during the cold‐dry winter with higher soil O2 concentration. The robust positive correlation between O2 concentration and SP values underpinned that the O2 dynamics were the key factor to differentiate the composite processes of N2O production in in situ structured soil. Our findings deciphered the complexity of N2O production processes in real field conditions, and suggest that O2 dynamics rather than stimulation of functional gene abundances play a key role in controlling soil N2O production processes in undisturbed structure soils. Our results help to develop targeted N2O mitigation measures and to improve process models for constraining global N2O budget.
- Chinese Academy of Sciences China (People's Republic of)
- Karlsruhe Institute of Technology Germany
- Institute of Mountain Hazards and Environment China (People's Republic of)
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry China (People's Republic of)
- Institute of Atmospheric Physics China (People's Republic of)
info:eu-repo/classification/ddc/550, 550, nitrous oxide, Bacteria, ddc:550, greenhouse gas emissions, Nitrogen, Nitrous Oxide, Agriculture, site preference, Nitrification, 630, Oxygen, Earth sciences, Soil, oxygen, agriculture
info:eu-repo/classification/ddc/550, 550, nitrous oxide, Bacteria, ddc:550, greenhouse gas emissions, Nitrogen, Nitrous Oxide, Agriculture, site preference, Nitrification, 630, Oxygen, Earth sciences, Soil, oxygen, agriculture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
