Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A remote sensing method for mapping alpine grasslines based on graph‐cut

Authors: Licong Liu; Jin Chen; Miaogen Shen; Xuehong Chen; Ruyin Cao; Xin Cao; Xihong Cui; +4 Authors

A remote sensing method for mapping alpine grasslines based on graph‐cut

Abstract

AbstractClimate change has induced substantial shifts in vegetation boundaries such as alpine treelines and shrublines, with widespread ecological and climatic influences. However, spatial and temporal changes in the upper elevational limit of alpine grasslands (“alpine grasslines”) are still poorly understood due to lack of field observations and remote sensing estimates. In this study, taking the Tibetan Plateau as an example, we propose a novel method for automatically identifying alpine grasslines from multi‐source remote sensing data and determining their positions at 30‐m spatial resolution. We first identified 2895 mountains potentially having alpine grasslines. On each mountain, we identified a narrow area around the upper elevational limit of alpine grasslands where the alpine grassline was potentially located. Then, we used linear discriminant analysis to adaptively generate from Landsat reflectance features a synthetic feature that maximized the difference between vegetated and unvegetated pixels in each of these areas. After that, we designed a graph‐cut algorithm to integrate the advantages of the Otsu and Canny approaches, which was used to determine the precise position of the alpine grassline from the synthetic feature image. Validation against alpine grasslines visually interpreted from a large number of high‐spatial‐resolution images showed a high level of accuracy (R2, .99 and .98; mean absolute error, 22.6 and 36.2 m, vs. drone and PlanetScope images, respectively). Across the Tibetan Plateau, the alpine grassline elevation ranged from 4038 to 5380 m (5th–95th percentile), lower in the northeast and southeast and higher in the southwest. This study provides a method for remotely sensing alpine grasslines for the first‐time at large scale and lays a foundation for investigating their responses to climate change.

Countries
China (People's Republic of), Hong Kong, China (People's Republic of)
Keywords

Graph-cut, Climate Change, Remote Sensing Technology, Climate change, Tibetan Plateau, Edge detection, Tibet, Alpine grassline, Landsat, Grassland, Ecosystem, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Energy Research