
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Heat wave‐induced microbial thermal trait adaptation and its reversal in the Subarctic

doi: 10.1111/gcb.17032
pmid: 37997641
AbstractClimate change predictions suggest that arctic and subarctic ecosystems will be particularly affected by rising temperatures and extreme weather events, including severe heat waves. Temperature is one of the most important environmental factors controlling and regulating microbial decomposition in soils; therefore, it is critical to understand its impact on soil microorganisms and their feedback to climate warming. We conducted a warming experiment in a subarctic birch forest in North Sweden to test the effects of summer heat waves on the thermal trait distributions that define the temperature dependences for microbial growth and respiration. We also determined the microbial temperature dependences 10 and 12 months after the heat wave simulation had ended to investigate the persistence of the thermal trait shifts. As a result of warming, the bacterial growth temperature dependence shifted to become warm‐adapted, with a similar trend for fungal growth. For respiration, there was no shift in the temperature dependence. The shifts in thermal traits were not accompanied by changes in α‐ or β‐diversity of the microbial community. Warming increased the fungal‐to‐bacterial growth ratio by 33% and decreased the microbial carbon use efficiency by 35%, and both these effects were caused by the reduction in moisture the warming treatments caused, while there was no evidence that substrate depletion had altered microbial processes. The warm‐shifted bacterial thermal traits were partially restored within one winter but only fully recovered to match ambient conditions after 1 year. To conclude, a summer heat wave in the Subarctic resulted in (i) shifts in microbial thermal trait distributions; (ii) lower microbial process rates caused by decreased moisture, not substrate depletion; and (iii) no detectable link between the microbial thermal trait shifts and community composition changes.
- Microbial Ecology France
- Lund University Sweden
- Microbial Ecology France
Soil, Hot Temperature, Climate Change, Temperature, Ecosystem, Soil Microbiology, Carbon
Soil, Hot Temperature, Climate Change, Temperature, Ecosystem, Soil Microbiology, Carbon
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
