
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate mitigation potential of cover crops in the United States is regionally concentrated and lower than previous estimates

doi: 10.1111/gcb.17372
pmid: 38894582
AbstractWidespread adoption of regenerative agriculture practices is an integral part of the US plan to achieve net‐zero greenhouse gas emissions by 2050. National incentives have particularly increased for the adoption of cover crops (CCs), which have presumably large carbon (C) sequestration potential. However, assessments of national CC climate benefits have not fully considered regional variability, changing C sequestration rates over time, and potential N2O trade‐offs. Using the DayCent soil biogeochemical model and current national survey data, we estimate CC climate change mitigation potential to be 39.0 ± 24.1 Mt CO2e year−1, which is 45%–65% lower than previous estimates, with large uncertainty attributed to N2O impacts. Three‐fourths of this climate change mitigation potential is concentrated in the North Central, Southern Great Plains and Lower Mississippi regions. Public investment should be focused in these regions to maximize CC climate benefits, but the national contribution of CC to emissions targets may be lower than previously anticipated.
- Cornell University United States
- New York University United States
- Colorado State University United States
Crops, Agricultural, Carbon Sequestration, Climate Change, Agriculture, Models, Theoretical, United States, Greenhouse Gases
Crops, Agricultural, Carbon Sequestration, Climate Change, Agriculture, Models, Theoretical, United States, Greenhouse Gases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
