

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation

ABSTRACTWith ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree‐ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species‐dependent and less well‐known for more temperate tree species. Using a unique pan‐European tree‐ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed‐effects modeling framework to (i) explain variation in climate‐dependent growth and (ii) project growth for the near future (2021–2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952–2011), the model yielded high regional explanatory power (R2 = 0.38–0.72). Considering a moderate climate change scenario (CMIP6 SSP2‐4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%–18% (interquartile range) in northwestern Central Europe and by 11%–21% in the Mediterranean region. In contrast, climate‐driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%–24% growth increase in the high‐elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (−10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water‐limited, a northward shift in its distributional range will be constrained by water availability.
- Universidad Politécnica de Madrid Spain
- National Centre for Information and Documentation Bulgaria
- University of Stirling United Kingdom
- Département Sciences sociales, agriculture et alimentation, espace et environnement France
- University of Liverpool United Kingdom
[SDE] Environmental Sciences, 550, suša, Trailing edge, Fagus sylvatica, Climate Change, trailing edge, climate change, climate sensitivity, drought, Fagus sylvatica, growth projection, leading edge, trailing edge, tree rings, občutljivost na klimo, drought, Forests, Fagus sylvatica; climate change; climate sensitivity; drought; growth projection; leading edge; trailing edge; tree rings, Growth projection, klimatske spremembe, občutljivost na klimo, suša, Fagus sylvatica, projekcija rasti, robni sestoji, branike, robni sestoji, projekcija rasti, Leading edge, Fagus, Climate change, 580, Drought, info:eu-repo/classification/udc/630*8, climate change; climate sensitivity; drought; Fagus sylvatica; growth projection; leading edge; trailing edge; tree rings, Tree rings, Temperature, Water, Climate sensitivity, leading edge, Droughts, Europe, tree rings, climate change, growth projection, klimatske spremembe, [SDE]Environmental Sciences, climate sensitivity, branike, udc: udc:630*8
[SDE] Environmental Sciences, 550, suša, Trailing edge, Fagus sylvatica, Climate Change, trailing edge, climate change, climate sensitivity, drought, Fagus sylvatica, growth projection, leading edge, trailing edge, tree rings, občutljivost na klimo, drought, Forests, Fagus sylvatica; climate change; climate sensitivity; drought; growth projection; leading edge; trailing edge; tree rings, Growth projection, klimatske spremembe, občutljivost na klimo, suša, Fagus sylvatica, projekcija rasti, robni sestoji, branike, robni sestoji, projekcija rasti, Leading edge, Fagus, Climate change, 580, Drought, info:eu-repo/classification/udc/630*8, climate change; climate sensitivity; drought; Fagus sylvatica; growth projection; leading edge; trailing edge; tree rings, Tree rings, Temperature, Water, Climate sensitivity, leading edge, Droughts, Europe, tree rings, climate change, growth projection, klimatske spremembe, [SDE]Environmental Sciences, climate sensitivity, branike, udc: udc:630*8
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 43 download downloads 30 - 43views30downloads
Data source Views Downloads DIGITAL.CSIC 43 30


