
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Contrasting Future Growth of Norway Spruce and Scots Pine Forests Under Warming Climate

doi: 10.1111/gcb.17580
pmid: 39548695
ABSTRACTForests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species‐specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st‐century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071–2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.
- Johannes Gutenberg University of Mainz Germany
- University of Zaragoza Spain
570, Carbon Sequestration, 550, Climate Change, Temperature, Pinus sylvestris, Forests, Global Warming, Trees, Europe, Picea
570, Carbon Sequestration, 550, Climate Change, Temperature, Pinus sylvestris, Forests, Global Warming, Trees, Europe, Picea
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
