Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting Climate Mitigation Through Carbon Burial in Blue Carbon Ecosystems—Challenges and Pitfalls

Authors: Erik Kristensen; Mogens R. Flindt; Cintia O. Quintana;

Predicting Climate Mitigation Through Carbon Burial in Blue Carbon Ecosystems—Challenges and Pitfalls

Abstract

ABSTRACTThe concept of “blue carbon” is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long‐term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks. Blue carbon sequestration in BCEs is typically estimated using either: 1. sediment carbon inventories combined with accretion rates or 2. carbon mass balance between input to and output from the sediment. The inventory approach is compromised by a lack of accurate accretion estimates over extended time periods. Hence, short‐term sedimentation assays cannot be reliably extrapolated to long timescales. The use of long‐term tracers like 210Pb, on the other hand, is invalid in most BCEs due to sediment mobility by bioturbation and other physical disturbances. While the mass balance approach provides reasonable short‐term (months) estimates, it often fails when extrapolated over longer time periods (> 100 years) due to climatic variations. Furthermore, many published budgets based on mass balance do not include all relevant carbon sources and sinks. Simulations of long‐term decomposition of mangrove, saltmarsh (Spartina sp.), and eelgrass (Zostera sp.) litter using a 3‐G exponential model indicate that current estimates of carbon sequestration based on the inventory and mass balance approaches are 3–18 times too high. Most published estimates of carbon sequestration in BCEs must therefore be considered overestimates. The climate mitigation potential of blue carbon in BCEs is also challenged by excess emissions of the GHG methane (CH4) and nitrous oxide (N2O) from biogenic structures in mangrove forests and saltmarsh sediments. Thus, in many cases, carbon sequestration into BCE sediments cannot keep pace with the simultaneous GHG emissions in CO2 equivalents.

Country
Denmark
Related Organizations
Keywords

mangrove, Carbon Sequestration, Geologic Sediments, decomposition, seagrass, Climate Change, carbon sequestration, Carbon, saltmarsh, Greenhouse Gases, blue carbon ecosystem, greenhouse gas, Wetlands, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research