
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recovery and Degradation Drive Changes in the Dispersal Capacity of Stream Macroinvertebrate Communities

ABSTRACTFreshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species. Here, we used a comprehensive dataset comprising 1327 time series of freshwater macroinvertebrate communities ranging from 1968 to 2021 across 23 European countries to investigate whether dispersal capacity changes with the ecological quality of riverine systems. Sites experiencing improvements in ecological quality exhibited a net gain in species and tended to have macroinvertebrate communities containing species with stronger dispersal capacity (e.g., active aquatic and aerial dispersers, species with frequent propensity to drift, and insects with larger wings). In contrast, sites experiencing degradation of ecological quality exhibited a net loss of species and a reduction in the proportion of strong dispersers. However, this response varied extensively among countries and local sites, with some improving sites exhibiting no parallel gains in macroinvertebrates with higher dispersal capacity. Dispersal capacity of the local species pool can affect the success of freshwater ecosystem restoration projects. Management strategies should focus on enhancing landscape connectivity to create accessible “source” areas and refugia for sensitive taxa, especially as climate change reshapes habitat suitability. Additionally, biodiversity initiatives must incorporate adaptive decision‐making approaches that account for the site‐specific responses of macroinvertebrate communities to changes in ecological quality.
Europe, Conservation of Natural Resources, Rivers, Climate Change, Animals, Biodiversity, Biologie, Invertebrates, Animal Distribution, Ecosystem, Research Article
Europe, Conservation of Natural Resources, Rivers, Climate Change, Animals, Biodiversity, Biologie, Invertebrates, Animal Distribution, Ecosystem, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
