
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
What Are the Limits to the Growth of Boreal Fires?

ABSTRACTBoreal forest regions, including East Siberia, have experienced elevated fire activity in recent years, leading to record‐breaking greenhouse gas emissions and severe air pollution. However, our understanding of the factors that eventually halt fire spread and thus limit fire growth remains incomplete, hindering our ability to model their dynamics and predict their impacts. We investigated the locations and timing of 2.2 million fire stops—defined as 300 m unburned pixels along fire perimeters—across the vast East Siberian taiga. Fire stops were retrieved from remote sensing data covering over 27,000 individual fires that collectively burned 80 Mha between 2012 and 2022. Several geospatial datasets, including hourly fire weather data and landscape variables, were used to identify the factors contributing to individual fire stops. Our analysis attributed 87% of all fire stops to a statistically significant (p < 0.01) change in one or more of these drivers, with fire‐weather drivers limiting fire growth over time and landscape drivers constraining it across space. We found clear regional and temporal variations in the importance of these drivers. For instance, landscape drivers—such as less flammable land cover and the presence of roads—were key constraints on fire growth in southeastern Siberia, where the landscape is more populated and fragmented. In contrast, fire weather was the primary constraint on fire growth in the remote northern taiga. Additionally, in central Yakutia, a major fire hotspot in recent years, fuel limitations from previous fires increasingly restricted fire spread. The methodology we present is adaptable to other biomes and can be applied globally, providing a framework for future attribution studies on global fire growth limitations. In northeast Siberia, we found that with increasing droughts and heatwaves, remote northern fires could potentially grow even larger in the future, with major implications for the global carbon cycle and climate.
- Wageningen University & Research Netherlands
- Vrije Universiteit Amsterdam Netherlands
- Free University of Amsterdam Pure VU Amsterdam Netherlands
- University of East Anglia United Kingdom
Siberia, Climate Change, Taiga, Remote Sensing Technology, Life Science, Weather, Fires, Research Article, Wildfires
Siberia, Climate Change, Taiga, Remote Sensing Technology, Life Science, Weather, Fires, Research Article, Wildfires
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
