Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aberdeen University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
GCB Bioenergy
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Uncertainty of modelled bioenergy with carbon capture and storage due to variability of input data

Authors: Anita Shepherd; Mike Martin; Astley Hastings;

Uncertainty of modelled bioenergy with carbon capture and storage due to variability of input data

Abstract

AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.

Country
United Kingdom
Keywords

QH301 Biology, EP/S029575/1, cohorts, projection, TJ807-830, bioenergy, Energy industries. Energy policy. Fuel trade, Renewable energy sources, modelling, QH301, SDG 13 - Climate Action, SDG 7 - Affordable and Clean Energy, Renewable Energy, uncertainty, Waste Management and Disposal, SDG 15 - Life on Land, NE/M019691/1, projections, 020, Sustainability and the Environment, Natural Environment Research Council (NERC), carbon capture, Forestry, MiscanFor, climate change, Engineering and Physical Sciences Research Council (EPSRC), miscanthus, HD9502-9502.5, HWSD soil sequences, Agronomy and Crop Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold