
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of greenhouse gas emissions timing on alternative biomass and fossil energy sources for district heating

doi: 10.1111/gcbb.12890
handle: 10067/1807430151162165141
AbstractDistrict heating (DH) systems can improve energy efficiency, reduce greenhouse gas (GHG) emissions, and be a cost‐effective residential space heating alternative over conventional decentralized heating. This study uses radiative forcing (RF), a time‐sensitive life cycle assessment metric, to evaluate space heating alternatives. We compare forest residue and willow biomass resources and natural gas as fuel sources against decentralized heating using heating oil. The comparison is performed for selected locations in the Northeastern United States over a 30‐year production timeline and 100 observation years. The natural gas and willow scenarios are compared with scenarios where available forest residue is unused and adds a penalty of GHG emissions due to microbial decay. When forest residues are available, their use is recommended before considering willow production. Investment in bioenergy‐based DH with carbon capture and storage and natural‐gas‐based DH with carbon capture and storage (CCS) technology is considered to assess their influence on RF. Its implementation further improves the net carbon mitigation potential of DH despite the carbon and energy cost of CCS infrastructure. Soil carbon sequestration from willow production reduces RF overall, specifically when grown on land converted from cropland to pasture, hay, and grassland. The study places initial GHG emissions spikes from infrastructure and land‐use change into a temporal framework and shows a payback within the first 5 years of operation for DH with forest residues and willow.
- State University of New York at Potsdam United States
- SUNY College of Environmental Science and Forestry United States
- University of Antwerp Belgium
- Technion Israel Institue of Technology Israel
- Drexel University United States
radiative forcing, Physics, LCA, TJ807-830, Energy industries. Energy policy. Fuel trade, CCS, Renewable energy sources, BECCS, bioenergy crops, HD9502-9502.5, Biology, Engineering sciences. Technology, district heating
radiative forcing, Physics, LCA, TJ807-830, Energy industries. Energy policy. Fuel trade, CCS, Renewable energy sources, BECCS, bioenergy crops, HD9502-9502.5, Biology, Engineering sciences. Technology, district heating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
