
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increasing global ecosystem respiration between 1982 and 2015 from Earth observation‐based modelling

doi: 10.1111/geb.13775
AbstractAimEarth observation‐based estimates of land–atmosphere exchange of carbon are essential for understanding the response of the terrestrial biosphere to climatic change and other anthropogenic forcing. Temperature, soil water content and gross primary production are the main drivers of ecosystem respiration (Reco), and the main aims of this study are to develop an Reco model driven by long‐term global‐scale Earth observations and to study Reco spatiotemporal dynamics 1982–2015.LocationGlobal scale.Time Period1982–2015.Major Taxa StudiedTerrestrial ecosystems.MethodsWe parameterized and applied a global Reco model for 1982–2015 using novel Earth observation‐based data. We studied the relationships between Reco measured at field sites globally and land surface temperature, gross primary production and soil water content. Trends 1982–2015 were quantified, and the contributions from terrestrial regions to the spatiotemporal variability were evaluated.ResultsThe Reco model (LGS‐Reco) captured the between‐site and intra‐ and interannual variability in field‐observed Reco and soil respiration well in comparison with other Earth observation‐based products. The global annual Reco was on average 105.6 ± 2.3 Pg C for 1982–2015, which is close to 105 Pg C according to residuals of the carbon exchange processes within the global carbon budgets. The trend in global terrestrial Reco 1982–2015 was 0.19 ± 0.02 Pg C y−1, with the strongest positive trends found in cropland areas, whereas negative trends were primarily observed for savannah/shrublands of Southern Africa and South America. Trends were especially strong during the eighties and nineties, but substantially smaller 1998–2015.Main ConclusionsThe LGS‐Reco model revealed a substantial increase in global Reco during recent decades. However, the growth rates of global Reco were slower during 1998–2015, partially explaining the reduced growth rates of atmospheric CO2 during this period. The LGR‐Reco product may be an essential source for studying carbon sources and sinks and functioning of the Earth system.
- Wuhan University China (People's Republic of)
- LUND UNIVERSITY Sweden
- Lund University Sweden
- University of Copenhagen Denmark
- Wuhan University China (People's Republic of)
Earth observation, terrestrial carbon balance, climate change, land surface temperature, land–atmosphere interactions
Earth observation, terrestrial carbon balance, climate change, land surface temperature, land–atmosphere interactions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
