
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions

AbstractAimThe scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.LocationTemperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).Time Period1960–2018.Major Taxa StudiedCase studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.MethodsWe compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.ResultsFor predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.Main ConclusionsWe propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.
- Utrecht University Netherlands
- University of Helsinki Finland
- University of Bristol United Kingdom
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement France
- Humboldt-Universität zu Berlin Germany
[SDE] Environmental Sciences, microclimat, 550, Economics, http://aims.fao.org/aos/agrovoc/c_379bbe9f, CLIMATE CHANGE, biogéographie, NONLINEARITY, écologie, http://aims.fao.org/aos/agrovoc/c_915, https://purl.org/becyt/ford/1.7, SDG 13 - Climate Action, MICROCLIMATE, http://aims.fao.org/aos/agrovoc/c_8114, http://aims.fao.org/aos/agrovoc/c_24199, changement climatique, U10 - Informatique, mathématiques et statistiques, http://aims.fao.org/aos/agrovoc/c_24392, http://aims.fao.org/aos/agrovoc/c_243, facteur climatique, distribution spatiale, nonlinearity, F70 - Taxonomie végétale et phytogéographie, technique de prévision, dynamique des populations, séquestration du carbone, Chemistry, climate change, [SDE]Environmental Sciences, http://aims.fao.org/aos/agrovoc/c_1236, L20 - Écologie animale, ECOPHYSIOLOGY, 570, F40 - Écologie végétale, http://aims.fao.org/aos/agrovoc/c_29554, ecophysiology, étude de cas, http://aims.fao.org/aos/agrovoc/c_29553, SPECIES DISTRIBUTION MODEL, macroclimate, données spatiales, modèle mathématique, http://aims.fao.org/aos/agrovoc/c_3041, Salamandre, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_4533, https://purl.org/becyt/ford/1, http://aims.fao.org/aos/agrovoc/c_6111, Biology, http://aims.fao.org/aos/agrovoc/c_5221, species distribution model, http://aims.fao.org/aos/agrovoc/c_4802, L60 - Taxonomie et géographie animales, resolution, biophysical ecology, MACROCLIMATE, http://aims.fao.org/aos/agrovoc/c_331583, BIOPHYSICAL ECOLOGY, http://aims.fao.org/aos/agrovoc/c_6743, RESOLUTION, données climatiques, http://aims.fao.org/aos/agrovoc/c_36230, http://aims.fao.org/aos/agrovoc/c_2467, microclimate
[SDE] Environmental Sciences, microclimat, 550, Economics, http://aims.fao.org/aos/agrovoc/c_379bbe9f, CLIMATE CHANGE, biogéographie, NONLINEARITY, écologie, http://aims.fao.org/aos/agrovoc/c_915, https://purl.org/becyt/ford/1.7, SDG 13 - Climate Action, MICROCLIMATE, http://aims.fao.org/aos/agrovoc/c_8114, http://aims.fao.org/aos/agrovoc/c_24199, changement climatique, U10 - Informatique, mathématiques et statistiques, http://aims.fao.org/aos/agrovoc/c_24392, http://aims.fao.org/aos/agrovoc/c_243, facteur climatique, distribution spatiale, nonlinearity, F70 - Taxonomie végétale et phytogéographie, technique de prévision, dynamique des populations, séquestration du carbone, Chemistry, climate change, [SDE]Environmental Sciences, http://aims.fao.org/aos/agrovoc/c_1236, L20 - Écologie animale, ECOPHYSIOLOGY, 570, F40 - Écologie végétale, http://aims.fao.org/aos/agrovoc/c_29554, ecophysiology, étude de cas, http://aims.fao.org/aos/agrovoc/c_29553, SPECIES DISTRIBUTION MODEL, macroclimate, données spatiales, modèle mathématique, http://aims.fao.org/aos/agrovoc/c_3041, Salamandre, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_4533, https://purl.org/becyt/ford/1, http://aims.fao.org/aos/agrovoc/c_6111, Biology, http://aims.fao.org/aos/agrovoc/c_5221, species distribution model, http://aims.fao.org/aos/agrovoc/c_4802, L60 - Taxonomie et géographie animales, resolution, biophysical ecology, MACROCLIMATE, http://aims.fao.org/aos/agrovoc/c_331583, BIOPHYSICAL ECOLOGY, http://aims.fao.org/aos/agrovoc/c_6743, RESOLUTION, données climatiques, http://aims.fao.org/aos/agrovoc/c_36230, http://aims.fao.org/aos/agrovoc/c_2467, microclimate
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
