Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ground Waterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ground Water
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://doi.org/10.5194/egusph...
Article . 2023 . Peer-reviewed
Data sources: Crossref
Ground Water
Article . 2024
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating Freshwater Lens Volume Based on Island Circularity

Authors: Lena Thissen; Janek Greskowiak; Gudrun Massmann;

Estimating Freshwater Lens Volume Based on Island Circularity

Abstract

AbstractFor many islands around the globe freshwater lenses (FWLs) are an important source of drinking water. Therefore, it is important to be able to estimate the amount of potable water below an island. This study provides a new approach on estimating FWL volumes from the islands' shape using a circularity parameter. FWLs of islands having several shapes, either shapes of real islands or idealized shapes, were modeled using a numerical steady‐state approach and the Ghyben‐Herzberg relation. Results were then compared in order to estimate possible FWL volumes of islands of various shapes from FWL volumes of islands with idealized shapes. Approximate lower and upper boundaries for the FWL volume were defined depending on the lens volumes of an elliptical island having the same circularity and that of a circular island, respectively, and on the circularity. For the maximum depth of a FWL it is not possible to define such an interval from the subset of islands used in this study. The presented findings can help to estimate the FWL volume on islands for which no data are available. The method may also be applied to give a first indication on potential FWL volume changes following climate change.

Keywords

Drinking Water, Climate Change, Fresh Water, Groundwater

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Energy Research