Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
HKU Scholars Hub
Article . 2015
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synergistic effects of climate change and local stressors: CO2 and nutrient‐driven change in subtidal rocky habitats

Authors: Russell, Bayden D.; Thompson, Jo Anne I; Falkenberg, Laura J.; Connell, Sean D.;

Synergistic effects of climate change and local stressors: CO2 and nutrient‐driven change in subtidal rocky habitats

Abstract

AbstractClimate‐driven change represents the cumulative effect of global through local‐scale conditions, and understanding their manifestation at local scales can empower local management. Change in the dominance of habitats is often the product of local nutrient pollution that occurs at relatively local scales (i.e. catchment scale), a critical scale of management at which global impacts will manifest. We tested whether forecasted global‐scale change [elevated carbon dioxide (CO2) and subsequent ocean acidification] and local stressors (elevated nutrients) can combine to accelerate the expansion of filamentous turfs at the expense of calcifying algae (kelp understorey). Our results not only support this model of future change, but also highlight the synergistic effects of future CO2 and nutrient concentrations on the abundance of turfs. These results suggest that global and local stressors need to be assessed in meaningful combinations so that the anticipated effects of climate change do not create the false impression that, however complex, climate change will produce smaller effects than reality. These findings empower local managers because they show that policies of reducing local stressors (e.g. nutrient pollution) can reduce the effects of global stressors not under their governance (e.g. ocean acidification). The connection between research and government policy provides an example whereby knowledge (and decision making) across local through global scales provides solutions to some of the most vexing challenges for attaining social goals of sustainability, biological conservation and economic development.

Country
China (People's Republic of)
Related Organizations
Keywords

Turf-forming algae, Habitat resilience, 333, Coralline algae, Carbon dioxide, Climate change, CO2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    245
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
245
Top 1%
Top 10%
Top 1%
bronze