Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecology Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology Letters
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Ecology Letters
Article . 2008
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biodiversity enhances individual performance but does not affect survivorship in tropical trees

Authors: Potvin, Catherine Jeanne; Gotelli, Nicholas J.;

Biodiversity enhances individual performance but does not affect survivorship in tropical trees

Abstract

AbstractWe developed an analytical method that quantifies the relative contributions of mortality and individual growth to ecosystem function and analysed the results from the first biodiversity experiment conducted in a tropical tree plantation. In Sardinilla, central Panama, over 5000 tree seedlings were planted in monoculture and mixed‐species plots. After 5 years of growth, mixed‐species plots yielded, on average, 30–58% higher summed tree basal area than did monocultures. Simulation models revealed that the increased yield of mixed‐species plots was due mostly to enhancement of individual tree growth. Although c. 1500 trees died during the experiment, mortality was highly species‐specific and did not differ consistently between biodiversity treatments. Our results show that the effects of biodiversity on growth and mortality are uncoupled and that biodiversity affects total biomass and potentially self‐thinning. The Sardinilla experiment suggests that mixed‐species plantings may be a viable strategy for increasing timber yields and preserving biodiversity in tropical tree plantations.

Related Organizations
Keywords

580, Tropical Climate, Panama, Biodiversity, Models, Biological, Survival Analysis, Trees, Magnoliopsida, Species Specificity, Computer Simulation, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
173
Top 1%
Top 10%
Top 1%
Related to Research communities
Energy Research