
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Plant species traits are the predominant control on litter decomposition rates within biomes worldwide

AbstractWorldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species‐driven differences is much larger than previously thought and greater than climate‐driven variation; (ii) the decomposability of a species’ litter is consistently correlated with that species’ ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation–soil feedbacks, and for improving forecasts of the global carbon cycle.
- University of Alcalá Spain
- Minnesota State University Moorhead United States
- Swedish University of Agricultural Sciences Sweden
- Leibniz Association Germany
- University of Minnesota Morris United States
580, decomposition, Climate, Plant Development, carbon cycling, Biodiversity, Plants, Carbon, Plant Leaves, Biodegradation, Environmental, Species Specificity, XXXXXX - Unknown, Biomass, Phylogeny
580, decomposition, Climate, Plant Development, carbon cycling, Biodiversity, Plants, Carbon, Plant Leaves, Biodegradation, Environmental, Species Specificity, XXXXXX - Unknown, Biomass, Phylogeny
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.01% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
