Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcoholism Clinical and Experimental Research
Article . 2000 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Alcoholism Clinical and Experimental Research
Article . 2000 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

N‐methyl‐d‐aspartate Receptor Responses Are Differentially Modulated by Noncompetitive Receptor Antagonists and Ethanol in Inbred Long‐Sleep and Short‐Sleep Mice: Behavior and Electrophysiology

Authors: Thomas V. Dunwiddie; Taleen Hanania; Nancy R. Zahniser; Cori A. Negri;

N‐methyl‐d‐aspartate Receptor Responses Are Differentially Modulated by Noncompetitive Receptor Antagonists and Ethanol in Inbred Long‐Sleep and Short‐Sleep Mice: Behavior and Electrophysiology

Abstract

Background: Short‐sleep (SS) mice exhibit higher locomotor activity than do long‐sleep (LS) mice when injected with low doses of ethanol or the noncompetitive N‐methyl‐D‐aspartate receptor (NMDAR) antagonist MK‐801 (dizocilpine). SS mice also have higher densities of brain NMDARs. However, two strains of LS X SS recombinant inbred (RI) mice also show differential activation to ethanol and MK‐801, but have similar numbers of NMDARs. Here we used inbred LS (ILS) and SS (ISS) mice to investigate further the relationship between NMDARs and sensitivity to the stimulant effects of low doses of ethanol.Methods: Open field activity and spontaneous alternations were measured after saline or drug injection. [3H]MK‐801 binding parameters were determined in hippocampus, cortex, striatum, and nucleus accumbens. Extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region of hippocampal slices.Results: Systemic injection of either ethanol or MK‐801 increased locomotor activity to a greater extent in ISS mice than in ILS mice. The competitive NMDAR antagonist 2‐carboxypiperazin‐4‐yl‐propyl‐1–1phosphonic acid (±CPP) depressed activity of ILS, but not ISS, mice. No strain differences were observed in spontaneous alternations or in the number or affinity of NMDARs in the brain regions examined. Likewise, the magnitudes of hippocampal NMDAR‐mediated fEPSPs were similar in ILS and ISS mice and were inhibited to the same extent by a competitive NMDAR antagonist. However, both ethanol and the NMDAR NR2B receptor antagonist ifenprodil inhibited the late component of hippocampal NMDAR fEPSPs to a greater extent in ISS, than in ILS, mice.Conclusions: Differential ethanol‐ and MK‐801‐induced behavioral activation in ILS and ISS mice was not associated with differences in NMDAR number. Nonetheless, pharmacological differences in hippocampal NMDAR responsiveness suggest that ISS mice express NMDARs that have a greater sensitivity to noncompetitive, but not competitive, NMDAR antagonists. These differences, which may reflect differences in NMDAR subunit composition, could underlie the differential responsiveness to low doses of ethanol in ILS and ISS mice.

Keywords

Male, Recombination, Genetic, Brain Mapping, Ethanol, Brain, Mice, Inbred Strains, Binding, Competitive, Hippocampus, Receptors, N-Methyl-D-Aspartate, Mice, Radioligand Assay, Animals, Female, Sleep Stages, Dizocilpine Maleate, Excitatory Amino Acid Antagonists

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%