

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Beta diversity and specialization in plant–pollinator networks along an elevational gradient

doi: 10.1111/jbi.13615
handle: 10261/188303 , 10115/26535
Beta diversity and specialization in plant–pollinator networks along an elevational gradient
AbstractAimTo assess whether the reduced nutritional resources available for pollinators due to plant community simplification along an elevational plant‐diversity gradient changes pollinator niche breadth and richness. Additionally, we evaluated how body size and proboscis length of pollinators shifted along the gradient, and whether these changes were related to pollinator niche breadth.LocationAn elevational gradient (2,350–3,520 m a.s.l.) on the oceanic high‐mountain strato‐volcano of El Teide (Tenerife, Canary Islands).TaxonFlowering plant and pollinator species.MethodsWe compared quantitative plant–pollinator networks along the plant‐diversity gradient. We calculated a set of niche‐based topological metrics that capture the degree of specialization, niche breadth and niche overlap. Furthermore, we obtained β‐diversity measures and the proportion of replacement and richness components.ResultsThere was an overall decline in species richness of pollinators with increasing elevation. This decline was mainly driven by the loss of species along the elevational gradient, which conformed a nested subset pattern. The whole network showed less specialization, greater connectance and lower modularity towards the summit. At high elevations, pollinators were more generalized and less selective in their flower choice, showing a greater trophic niche breadth compared to pollinators at lower elevations. Mean body size of pollinators increased with elevation, and species body size and proboscis length were positively associated with the number of plant species visited.Main conclusionsOverall, results indicated that the elevational gradient filters pollinator species, probably according to their thermal tolerance and ability to exploit a wide range of trophic resources. The finding that pollinators become more generalized and opportunistic at higher elevations is a novel result, which may have implications for new research into how ecological networks vary over environmental gradients. From an applied perspective, our results highlight the importance of considering the spatial variation of species assemblages when aiming to construct functionally reliable interaction networks along environmental gradients.
Take urgent action to combat climate change and its impacts, Pollination networks, //metadata.un.org/sdg/13 [http], Functional diversity, Niche breadth, Climate change, Specialization
Take urgent action to combat climate change and its impacts, Pollination networks, //metadata.un.org/sdg/13 [http], Functional diversity, Niche breadth, Climate change, Specialization
4 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 69 download downloads 112 - 69views112downloads
Data source Views Downloads DIGITAL.CSIC 69 112


