Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Industrial Ecology
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis

Authors: Michael Martin;

Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis

Abstract

AbstractIndustrial symbiosis (IS), where different entities collaborate in the management of energy, utilities, materials, or services, has been identified as an approach to improve resource efficiency and circularity in industry. This article assesses the environmental performance of an IS network with firms involved in waste management, soil, surfaces, paper, lumber, and energy. The aim is to highlight the environmental performance of an IS network and pay particular attention to the improved performance for products in the IS network. Life cycle assessment is used to compare the current IS network with a reference scenario and a potential future development. The results suggest that there are significant benefits from the IS network. Large reductions in greenhouse gas (GHG) emissions and abiotic resource depletion were identified. Furthermore, large reductions in local impacts, namely eutrophication and acidification impacts are illustrated. It was shown that all firms in the network benefit from the synergies involved, with a large share of the benefits stemming from the facilitated exchanges with the waste management company. The replacement of conventional products and energy streams with bio‐based counterparts from within the network is of significant importance. Finally, the results point to the importance of the facilitation of by‐product synergies, and the significant value this creates in the region, with large potential to improve the environmental performance of firms and their products.

Powered by OpenAIRE graph
Found an issue? Give us feedback