Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Phytologist
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2019
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition

Authors: Biao Zhu; Feike A. Dijkstra; Liming Yin; Peng Wang; Weixin Cheng; Weixin Cheng;

Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition

Abstract

Summary Rhizosphere priming effects (RPEs) play a central role in modifying soil organic matter mineralization. However, effects of tree species and intraspecific competition on RPEs are poorly understood. We investigated RPEs of three tree species (larch, ash and Chinese fir) and the impact of intraspecific competition of these species on the RPE by growing them at two planting densities for 140 d. We determined the RPE on soil organic carbon (C) decomposition, gross and net nitrogen (N) mineralization and net plant N acquisition. Differences in the RPE among species were associated with differences in plant biomass. Gross N mineralization and net plant N acquisition increased, but net N mineralization decreased, as the RPE on soil organic C decomposition increased. Intraspecific competition reduced the RPE on soil organic C decomposition, gross and net N mineralization, and net plant N acquisition, especially for ash and Chinese fir. Microbial N mining may explain the overall positive RPEs across species, whereas intensified plant–microbe competition for N may have reduced the RPE with intraspecific competition. Overall, the species‐specific effects of tree species play an important role in modulating the magnitude and mechanisms of RPEs and the intraspecific competition on soil C and N dynamics.

Related Organizations
Keywords

Minerals, Bacteria, Nitrogen, Plant Development, Carbon Dioxide, Plant Roots, Carbon, Trees, Soil, Species Specificity, Rhizosphere, Biomass, Plant Shoots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%
bronze