Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2025
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2024
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strong nestedness and turnover effects on stand productivity in a long‐term forest biodiversity experiment

Authors: Lan Zhang; Bernhard Schmid; Franca J. Bongers; Shan Li; Goddert von Oheimb; Keping Ma; Xiaojuan Liu;

Strong nestedness and turnover effects on stand productivity in a long‐term forest biodiversity experiment

Abstract

Summary Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved. To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where one community contains a subset of the species of another, and turnover, where two communities differ in species composition but not in species richness. We evaluated the effects of species/functional group nestedness and turnover on stand productivity using 315 mixed plots from a pool of 40 tree species in a large forest biodiversity experiment in subtropical China. We found that the greater the differences in species or functional group nestedness and turnover, the greater the differences in stand productivity between plots. Additionally, the strong effects of both nestedness and turnover on stand productivity developed over the 11‐yr observation period. Our results indicate that selection of specific tree species is as important as planting a large number of species to support the productivity function of forests. Furthermore, the selection of specific tree species should be based on functionality, because beneficial effects of functional group composition were stronger than those of species composition.

Country
Netherlands
Keywords

biodiversity–ecosystem functioning, China, Time Factors, nestedness, species composition, turnover, Biodiversity, Forests, Trees, functional groups, Species Specificity, Biomass, richness

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities
Energy Research