
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods

Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods
AbstractHydrometeorological phenomena have increased in intensity and frequency in last decades, with Europe as one of the most affected areas. This accounts for considerable economic losses in the region. Regional adaptation strategies for costs minimization require a comprehensive assessment of the disasters’ economic impacts at a multiple‐region scale. This article adapts the flood footprint method for multiple‐region assessment of total economic impact and applies it to the 2009 Central European Floods event. The flood footprint is an impact accounting framework based on the input–output methodology to economically assess the physical damage (direct) and production shortfalls (indirect) within a region and wider economic networks, caused by a climate disaster. Here, the model is extended through the capital matrix, to enable diverse recovery strategies. According to the results, indirect losses represent a considerable proportion of the total costs of a natural disaster, and most of them occur in nonhighly directly impacted industries. For the 2009 Central European Floods, the indirect losses represent 65% out of total, and 70% of it comes from four industries: business services, manufacture general, construction, and commerce. Additionally, results show that more industrialized economies would suffer more indirect losses than less‐industrialized ones, in spite of being less vulnerable to direct shocks. This may link to their specific economic structures of high capital‐intensity and strong interindustrial linkages.
- University of Groningen Netherlands
- University College London United Kingdom
- Norwich University United States
- Tsinghua University China (People's Republic of)
- Autonomous University of Coahuila Mexico
flood footprint, Risk, 330, IMPACT, Climate Change, Climate change adaptation, 910, input-output model, Floods, MODEL, Europe
flood footprint, Risk, 330, IMPACT, Climate Change, Climate change adaptation, 910, input-output model, Floods, MODEL, Europe
5 Research products, page 1 of 1
- 2008IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
