
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of an Azimuthal Mean Flow on the Structure and Stability of Thermoacoustic Modes in an Annular Combustor Model With Electroacoustic Feedback

Effect of an Azimuthal Mean Flow on the Structure and Stability of Thermoacoustic Modes in an Annular Combustor Model With Electroacoustic Feedback
Abstract Thermoacoustic oscillations in axisymmetric annular combustors are generally coupled by degenerate azimuthal modes, which can be of standing or spinning nature. Symmetry breaking due to the presence of a mean azimuthal flow splits the degenerate thermoacoustic eigenvalues, resulting in pairs of counter-spinning modes with close but distinct frequencies and growth rates. In this study, experiments have been performed using an annular system where the thermoacoustic feedback due to the flames is mimicked by twelve identical electro-acoustic feedback loops. The mean azimuthal flow is generated by fans. We investigate the standing/spinning nature of the oscillations as a function of the azimuthal Mach number for two types of initial states and how the stability of the system is affected by the mean azimuthal flow. It is found that spinning, standing, or mixed modes can be encountered at very low Mach number, but increasing the mean velocity promotes one spinning direction. At sufficiently high Mach number, only spinning modes are observed in the limit cycle oscillations. In some cases, the initial conditions have a significant impact on the final state of the system. It is found that the presence of a mean azimuthal flow increases the acoustic damping. This has a beneficial effect on stability: it often reduces the amplitude of the self-sustained oscillations, and can even suppress them in some cases. However, we observe that the suppression of a mode due to the mean flow may destabilize another one. We discuss our findings in relation to an existing low-order model.
thermoacoustic oscillations, azimuthal mean flow, annular combustor, 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten, electroacoustic feedback, acoustic damping, ddc: ddc:620
thermoacoustic oscillations, azimuthal mean flow, annular combustor, 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten, electroacoustic feedback, acoustic damping, ddc: ddc:620
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
