
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Theoretical Analysis of a Water Desalination System Using Low Grade Solar Heat

Theoretical analysis of a solar desalination system utilizing an innovative new concept, which uses low-grade solar heat, is presented. The system utilizes natural means of gravity and atmospheric pressure to create a vacuum, under which liquid can be evaporated at much lower temperatures and with less energy than conventional techniques. The uniqueness of the system is in the way natural forces are used to create vacuum conditions and its incorporation in a single system design where evaporation and condensation take place at appropriate locations without any energy input other than low grade heat. The system consists of solar heating system, an evaporator, a condenser, and injection, withdrawal, and discharge pipes. The effect of various operating conditions, namely, withdrawal rate, depth of water body, temperature of the heat source, and condenser temperature were studied. Numerical simulations show that the proposed system may have distillation efficiencies as high as 90% or more. Vacuum equivalent to 3.7 kPa (abs) or less can be created depending on the ambient temperature at which condensation will take place.
- Florida Southern College United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).71 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
