
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design and Off-Design Analysis of a MW Hybrid System Based on Rolls-Royce Integrated Planar Solid Oxide Fuel Cells

doi: 10.1115/1.1839917
handle: 11567/245822
In this paper the design point definition of a pressurised hybrid system based on the Rolls-Royce Integrated Planar-Solid Oxide Fuel Cells (IP-SOFCs) is presented and discussed. The hybrid system size is about 2 MWe and the design point analysis has been carried out using two different IP-SOFC models developed by Thermochemical Power Group (TPG) at the University of Genoa: (i) a generic one, where the transport and balance equations of the mass, energy and electrical charges are solved in a lumped volume at constant temperature; (ii) a detailed model where all the equations are solved in a finite difference approach inside the single cell. The first model has been used to define the hybrid system lay out and the characteristics of the main devices of the plant such as the recuperator, the compressor, the expander, etc. The second model has been used to verify the design point defined in the previous step, taking into account that the stack internal temperature behavior are now available and must be carefully considered. Apt modifications of the preliminary design point have been suggested using the detailed IP-SOFC system to obtain a feasible solution. In the second part of the paper some off-design performance of the Hybrid System carried out using detailed SOFC model are presented and discussed. In particular the influence of ambient conditions is shown, together with the possible part load operations at fixed and variable gas turbine speed. Some considerations on the compressor surge margin modification are reported.
- Goa University India
- University of Genoa Italy
- Rolls-Royce Motor Cars United Kingdom
- Rolls-Royce Motor Cars United Kingdom
HYBRID SYSTEMS
HYBRID SYSTEMS
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
