Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Insight Into the Flow Around a Wind Turbine Airfoil Section1

Authors: F. Rasmussen; F. Bertagnolio; Niels N. Sørensen;

New Insight Into the Flow Around a Wind Turbine Airfoil Section1

Abstract

The objective of this paper is an improved understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. Two- and three-dimensional Navier–Stokes calculations of the flow around a wind turbine airfoil using the k−ω SST and Detached Eddy Simulation (DES) turbulence models, as well as an engineering semiempirical dynamic stall model, are conducted. The computational results are compared to the experimental results that are available for both the static airfoil and the pitching airfoil. It is shown that the Navier–Stokes simulations can reproduce the main characteristic features of the flow. The DES model seems to be able to reproduce most of the details of the unsteady aerodynamics. Aerodynamic work computations indicate that a plunging motion of the airfoil can become unstable.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average