Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fuel Cell Science and Technology
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of an Electrochemical Alcohol Concentration Sensor: Optimization of the Anode Structure

Authors: SGROI M; BOLLITO G; INNOCENTI G; SARACCO, GUIDO; SPECCHIA, STEFANIA; ICARDI, UGO ANDREA;

Study of an Electrochemical Alcohol Concentration Sensor: Optimization of the Anode Structure

Abstract

Micro power sources have a wide potential market for consumer electronics and portable applications, such as weather stations, medical devices, signal units, APU (auxiliary power units), gas sensors, and security cameras. A micro power source could be the direct methanol fuel cell system (DMFC). An important aspect of this system is the precise control of the concentration of the alcohol-water solution fed to the anode. Different detection principles were taken into consideration: electrochemical, infrared spectroscopy, gas chromatography, refractometry, density measurements, ultraviolet absorption. The present work is devoted to the study of an electrochemical amperometric sensor. The device is based on the electro-oxidation of methanol to carbon dioxide on platinum catalyst into a polymeric-membrane fuel cell operated as a galvanic cell. The alcohol-water solution under examination is fed to the anode (positive side) of a polymeric membrane fuel cell, where it reacts with water to produce carbon dioxide, protons, and electrons. Protons diffuse through the electrolyte material and recombine with electrons on the cathode catalyst (negative side). At high potentials (>0.7V) mass transfer of methanol to the electrode solution interface controls the observed current. Therefore, it is possible to correlate the solution concentration to the observed limiting current. This method was successfully applied to relatively diluted solutions (concentration <1M). The application of this principle to more concentrate solutions (up to 2M) requires an optimization of the anode structure to enhance the influence of mass transport limitation. Moreover, during continuous operation of the sensor, a decay of the signal was observed: the absence of a steady-state current value hinders the application of the sensor. An explanation of this phenomenon and a possible solution strategy are proposed.

Country
Italy
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average