Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Study of Radiation Characteristics in a Dish Solar Collector System

Authors: Xin-Lin Xia; Yong Shuai; He-Ping Tan;

Numerical Study of Radiation Characteristics in a Dish Solar Collector System

Abstract

This paper aims at predicting radiation characteristics of the solar collector system by the Monte Carlo method with respect to the corresponding optical properties. Several probability models were introduced to analyze the effects of sunshape and surface roughness. Directional characteristics of radiative flux in the focal region and flux distribution of the cavity receiver were considered. An equivalent radiation flux method is presented for designing the shape of the cavity receiver. Based on the relative numerical simulation results, a new shape cavity receiver called “upside-down tear drop” is proposed to meet an almost uniform radiation flux field. Radiation effects due to multiple reflections and thermal emission in the cavity are parametrized by using the radiative exchange factor. The calculation results can be a valuable reference for the design and assemblage of the dish solar collector system.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Average