Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental Study of PCM Inclusion in Different Building Envelopes

Authors: Ingrid Martorell; Albert Castell; Marc Medrano; Cecilia Castellón; Luisa F. Cabeza;

Experimental Study of PCM Inclusion in Different Building Envelopes

Abstract

The main objective of this paper is to demonstrate experimentally that it is possible to improve the thermal comfort and reduce the energy consumption of a building without substantial increase in the weight of the construction materials with the inclusion of phase change materials (PCM). PCM are a suitable and promising technology for this application. This paper presents an experimental setup to test PCM with various typical insulation and construction materials in real conditions in Puigverd de Lleida (Lleida, Spain). Nine small house-sized cubicles were constructed: two with concrete, five with conventional brick, and two with alveolar brick. PCM was added in one cubicle of each typology. For each type of construction specific experiments were done. In all cubicles, free-floating temperature experiments were performed to determine the benefits of using PCM. A Trombe wall was added in both concrete cubicles and its influence was investigated. All brick cubicles were equipped with domestic heat pumps as Heating, Ventilation, and Air Conditioning (HVAC) system; therefore, the energy consumption was registered, providing real information about the energy savings. Results were very good for the concrete cubicles, since temperature oscillation were reduced by up to 4°C through the use of PCM and also peak temperatures in the PCM cubicle were shifted in later hours. In the brick cubicles, the energy consumption of the HVAC system in summer was reduced by using PCM for set points higher than 20°C. During winter an insulation effect of the PCM is observed, keeping the temperatures of the cubicles warmer, especially during the cold hours of the day.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%