Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Engineering for Gas Turbines and Power
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1115/gt2010...
Conference object . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical Study of Aerodynamic Losses of Effusion Cooling Holes in Aero-Engine Combustor Liners

Authors: ANDREINI, ANTONIO; BONINI, ALESSIO; CACIOLLI, GIANLUCA; FACCHINI, BRUNO; S. Taddei;

Numerical Study of Aerodynamic Losses of Effusion Cooling Holes in Aero-Engine Combustor Liners

Abstract

Due to the stringent cooling requirements of novel aero-engines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work, an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data were taken from a set of CFD RANS (Reynolds-averaged Navier-Stokes) simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo/fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken into account, making it possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: The dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one-dimensional thermo/fluid network solver, and its results were compared with CFD data. An overall good agreement of pressure and mass flow rate distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: Within the validity range of pressure ratios in which the correlation is defined (>1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction.

Country
Italy
Keywords

gas turbine; combustor; film cooling; aerodynamics; discharge coefficient, discharge coefficient; effusion cooling; combustor liner; correlation; CFD analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average