Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publikationer från K...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Engineering for Gas Turbines and Power
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Remotely Operated Aeroelastically Unstable Low Pressure Turbine Cascade for Turbomachinery Aeromechanics Education and Training—Remote Flutter Lab

Authors: Lucio, Monaco; Bergmans, John; Vogt, Damian; Fransson, Torsten H.;

A Remotely Operated Aeroelastically Unstable Low Pressure Turbine Cascade for Turbomachinery Aeromechanics Education and Training—Remote Flutter Lab

Abstract

The use of advanced pedagogical methodologies in connection with advanced use of modern information technology for delivery enables new ways of communicating, of exchanging knowledge, and of learning that are gaining increasing relevance in our society. Remote laboratory exercises offer the possibility to enhance learning for students in different technical areas, especially to the ones not having physical access to laboratory facilities and thus spreading knowledge in a world-wide perspective. A new “Remote Flutter Laboratory” has been developed to introduce aeromechanics engineering students and professionals to aeroelastic phenomena in turbomachinery. The laboratory is world-wide unique in the sense that it allows global access for learners anywhere and anytime to a facility dedicated to what is both a complex and relevant area for gas turbine design and operation. The core of the system consists of an aeroelastically unstable turbine blade row that exhibits self-excited and self-sustained flutter at specific operating conditions. Steady and unsteady blade loading and motion data are simultaneously acquired on five neighboring suspended blades and the whole system allows for a distant-based operation and monitoring of the rig as well as for automatic data retrieval. This paper focuses on the development of the Remote Flutter Laboratory exercise as a hands-on learning platform for online and distant-based education and training in turbomachinery aeromechanics enabling familiarization with the concept of critical reduced frequency and of flutter phenomena. This laboratory setup can easily be used “as is” directly by any turbomachinery teacher in the world, free of charge and independent upon time and location with the intended learning outcomes as specified in the lab, but it can also very easily be adapted to other intended learning outcomes that a teacher might want to highlight in a specific course. As such it is also a base for a turbomachinery repository of advanced remote laboratories of global uniqueness and access. The present work documents also the pioneer implementation of the LabSocket System for the remote operation of a wind tunnel test facility from any Internet-enabled computer, tablet or smartphone with no end-user software or plug-in installation.

Country
Sweden
Keywords

Energiteknik, Low-pressure turbine cascade, Energy Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Beta
sdg_colorsSDGs:
Related to Research communities
Energy Research