Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat Transfer Performance of Internal Cooling Channel With Single-Row Jet Impingement Array by Varying Flow Rates

Authors: Maryanne Alvin; Sin Chien Siw; Nicholas Miller; Minking K. Chyu;

Heat Transfer Performance of Internal Cooling Channel With Single-Row Jet Impingement Array by Varying Flow Rates

Abstract

The current detailed experimental study focuses on the optimization of heat transfer performance through jet impingement by varying the coolant flow rate to each individual jet. The test section consists of an array of jets, each jet individually fed and metered separately, that expel coolant into the channel and exit through one end. The diameter D, height-to-diameter H/D, and jet spacing-to-diameter S/D are all held constant at 9.53 mm, 2, and 4, respectively. Upon defining the optimum flow rate for each jet, varying diameter jet plates are designed and tested using a similar test setup with the addition of a plenum. Two test cases are conducted by varying the jet diameter within 10% compared to the benchmark jet diameter, 9.53 mm. The Reynolds number, which is based on hydraulic diameter of the channel and total mass flow rate entering the channel, ranges from approximately 52,000 up to 78,000. The transient liquid crystal technique is employed in this study to determine the local and average heat transfer coefficient distributions on the target plate. Commercially available computational fluid dynamics software, ansys cfx, is used to qualitatively correlate the experimental results and to fully understand the flow field distributions within the channel. The results revealed that varying the jet flow rates, total flow varied by approximately ±5% from that of the baseline case, the heat transfer enhancement on the target surface is enhanced up to approximately 35%. However, when transitioning to the varying diameter jet plate, this significant enhancement is suppressed due to the nature of flow distribution from the plenum, combined with the complicated crossflow effects.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average