Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MediaTUMarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MediaTUM
Article . 2019
Data sources: MediaTUM
Journal of Energy Resources Technology
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: An Industrial Scale Test Rig

Authors: Schatte, Gerrit A.; Kohlhepp, Andreas; Gschnaidtner, Tobias; Wieland, Christoph; Spliethoff, Hartmut;

Heat Transfer to Supercritical Water in Advanced Power Engineering Applications: An Industrial Scale Test Rig

Abstract

Heat transfer to supercritical water in heated tubes and channels is relevant for steam generators in conventional power plants and future concepts for supercritical nuclear and solar-thermal power plants. A new experimental facility, the high pressure evaporation rig, setup at the Institute for Energy Systems (Technische Universität München) aims to provide heat transfer data to fill the existing knowledge gaps at these conditions. The test rig consists of a closed-loop high pressure cycle, in which de-ionized water is fed to an instrumented test section heated by the application of direct electrical current. It is designed to withstand a maximum pressure of 380 bar at 580 °C in the test section. The maximum power rating of the system is 1 MW. The test section is a vertical tube (material: AISI A213/P91) with a 7000 mm heated length, a 15.7 mm internal diameter, and a wall thickness of 5.6 mm. It is equipped with 70 thermocouples distributed evenly along its length. It enables the determination of heat transfer coefficients in the supercritical region at various steady-state or transient conditions. In a first series of tests, experiments are conducted to investigate normal and deteriorated heat transfer (DHT) under vertical upward flow conditions. The newly generated data and literature data are used to evaluate different correlations available for modeling heat transfer coefficients at supercritical pressures.

Keywords

Maschinenbau, supercritical water; power plants; steam generator; heat transfer; flexible operation; experiments, ddc: ddc:620, ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green