Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring Heat Transfer Characteristics of Ferrofluid in the Presence of Magnetic Field for Cooling of Solar Photovoltaic Systems

Authors: Balkrishna Mehta; A Alshqirate; Mohammed Asfer; Danvendra Singh; Sudip Shyam;

Exploring Heat Transfer Characteristics of Ferrofluid in the Presence of Magnetic Field for Cooling of Solar Photovoltaic Systems

Abstract

In this paper, a ferrofluid-based cooling technique is proposed for solar photovoltaic (PV) systems, where ferrofluid flow can be easily altered by the application of an external magnetic field leading to enhanced heat transfer from the hot surface of PV systems. The effect of both constant and alternating magnetic field on ferrofluid flow through a minichannel is explored numerically in the present work. A detailed parametric study is performed to investigate the effect of actuation frequencies of alternating magnetic field (0.5–20 Hz) and Reynolds numbers (Re = 24, 60, and 100) on heat transfer characteristics of ferrofluid. An overall enhancement of 17.41% is observed for heat transfer of ferrofluid in the presence of magnetic field compared to the base case of no magnetic field. For the case of alternating magnetic field, a critical actuation frequency is observed for each Reynolds number above which heat transfer is observed to decrease. The enhancement or decrease in heat transfer of ferrofluid is found to depend on several factors such as actuation frequency of alternating magnetic field, Reynolds numbers of ferrofluid flow, and formation/dispersion of stagnant layers of ferrofluid at the magnet location. Preliminary visualization of ferrofluid flow is also carried out to provide a qualitative insight to the nature of transportation of ferrofluid in the presence of an alternating magnetic field.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%