Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Resources Technology
Article . 2019 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantification of the Improvement of Performance of Solid Oxide Fuel Cell Using Chiller-Based Fuel Recirculation

Authors: Agnieszka Zurawska; Jakub Kupecki; Arkadiusz Szczesniak; Konrad Motylinski; Jarosław Milewski; Lukasz Szablowski; Yevgeniy Naumovich;

Quantification of the Improvement of Performance of Solid Oxide Fuel Cell Using Chiller-Based Fuel Recirculation

Abstract

Abstract Solid oxide fuel cells operate at high temperature, typically in the range 650–850 °C, utilizing between 50% and 75% of fuel. The remaining fuel can be either burned in a post-combustor located downstream of the solid oxide fuel cells (SOFC) stack or partially recycled. Several of the SOFC-based power systems include recirculation which is used to supply the steam to the fuel processing unit based on steam reforming. In such a system, the recycled stream makes it possible to eliminate the supply of water from the external source. In the same time, recirculation aids in increasing the overall fuel utilization in the power system. As a result the efficiency increases by 5–12% points. The electrochemical reaction in SOFC generates a substantial amount of water by combining the hydrogen molecules with oxygen extracted from the air entering the cathodic compartments. The recycled stream contains water vapor which is circulated in the recycled loop. In the current analysis, the system for recirculation of the anodic off-gas with complete removal of water was proposed and studied. Performance of a planar cell operated with different rates of recycling was studied using the experimental setup with chiller-based recirculation. Quantification of the improvement of the efficiency was based on the analysis of the increase of voltage of cell operated at a given current density. The experimental study demonstrated that the performance of a stand-alone SOFC can be increased by 18–31%. Additionally, the numerical model was proposed to determine the performance in other operating conditions.

Keywords

fuel recirculation, fuel cells, alternative energy sources, hydrogen energy, SOFC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average