Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Energy Resources Technology
Article . 2020 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Review on the Performance, Combustion, and Emission Characteristics of Spark-Ignition Engine Fueled With 2,5-Dimethylfuran Compared to Ethanol and Gasoline

Authors: Van Viet Pham; Kanit Wattanavichien; Quang Vinh Tran; Hadiyanto Hadiyanto; Danh Chan Nguyen; Anh Tuan Hoang;

A Review on the Performance, Combustion, and Emission Characteristics of Spark-Ignition Engine Fueled With 2,5-Dimethylfuran Compared to Ethanol and Gasoline

Abstract

AbstractCurrently, the supply of diminishing fossil fuel reserves, and the rise in challenges in environmental, political and economic consequences have caused the great concerns in the development of modern society; these have forced the policy-makers and researchers to look for the renewable and green energy sources. Deemed as a promising renewable alternative to traditional fossil fuels, 2,5-dimethylfuran (DMF, chemical formula C6H8O)—a derivative of furan—has the potential to relieve the growing shortage of fossil fuels while satisfying the increase in global energy demand and minimizing the adverse effects of climate change. DMF can be used as a clean source of liquid transportation biofuel given the fact that it is directly obtained from biomass-derived carbohydrates. In reviewing current DMF production methods, this review paper analyzes and presents the comparison of catalytic performance in the conversion of biomass into DMF. In addition, the applicability of DMF in spark-ignition (SI) engines is thoroughly analyzed based on the spray and flame, combustion, performance, and emission characteristics of SI engines running on DMF compared with ethanol and gasoline. More interestingly, the knocking, lubrication, and wear characteristics in SI engines fueled with DMF are also evaluated and discussed. Nonetheless, further investigation on optimization strategies on DMF production process should be conducted prior to the initiation of large-scale commercialization as well as the application of DMF to real-world SI engines.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%