Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Solar Ene...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Solar Energy Engineering
Article . 2022 . Peer-reviewed
License: ASME Site License Agreemen
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2023
Data sources: Hal
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Robust Control Approach for Frequency Support Capability of Grid-Tie Photovoltaic Systems

Authors: Ardjoun, Sid Ahmed El Mehdi; Denaï, Mouloud; Chafouk, Houcine;

A Robust Control Approach for Frequency Support Capability of Grid-Tie Photovoltaic Systems

Abstract

Abstract Distributed solar photovoltaic (PV) generation is growing rapidly around the world. However, unlike conventional synchronous generators, PV systems do not have any rotating masses to deliver inertia to support the grid frequency. The paper presents a detailed modeling of a new converter configuration and control scheme to enable PV systems to adjust the real power output and contribute to the grid frequency regulation. The proposed topology consists of a two-stage converter without an energy storage system. A DC–DC buck converter is used instead of a DC–DC boost converter, and this simplifies the control scheme which aims to keep the PV generator power in the right side of the P–V characteristic and can be varied in the range from near-zero to the maximum power. The proposed control scheme combines robust and nonlinear sliding mode theory with fuzzy logic. The PV system is connected to a low inertia microgrid and its ability to contribute to frequency regulation is assessed for different controls. The proposed converter and its control are validated experimentally on a 3-kW PV system using OPAL-RT real-time simulator and tested under varying temperature, solar irradiance, and partial shading conditions. The results show that with the proposed circuit, the operating point is always on the right side of the P–V characteristic irrespective of the operating mode. Furthermore, the proposed control scheme provides PV generators with a fast and effective inertial response to support the grid and enhance its stability during contingencies.

Country
France
Keywords

[SPI]Engineering Sciences [physics], [SPI] Engineering Sciences [physics]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%